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This paper extends the two-compartment granular fountain �D. van der Meer, P. Reimann, K. van der Weele,
and D. Lohse, Phys. Rev. Lett. 92, 184301 �2004�� to an arbitrary number of compartments: The tendency of
a granular gas to form clusters is exploited to generate spontaneous convective currents, with particles going
down in the well-filled compartments and going up in the diluted ones. We focus upon the bifurcation diagram
of the general K-compartment system, which is constructed using a dynamical flux model and which proves to
agree quantitatively with results from molecular dynamics simulations.
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I. INTRODUCTION

The most prominent feature of a granular gas is the fact
that energy is dissipated in every collision of the particles. In
order to keep the particles in a gaseous state, a continuous
supply of energy is needed, so granular gases are intrinsically
far from thermodynamic equilibrium; this results in many
remarkable properties unseen in any ordinary molecular gas
�1,2�. One striking example of such a property is the ten-
dency to spontaneously separate into dense and dilute re-
gions, known as clustering �3–5�, which can be demonstrated
in a particularly clear-cut form in a vertically vibrated con-
tainer that is divided into K connected compartments �6–8�.

In many experimental situations, the energy the system
needs is supplied from one of the boundaries, i.e., the gas is
vibrated �“heated”� from one of the sides �9�. In ordinary
fluids this type of heating is known to produce convective
currents, and similar currents have also been reported in
granular systems, where they go hand in hand with the clus-
tering effect �10–12�: Patterns of dense �cold� regions
streaming towards the wall alternated with dilute �hot�
streams directed from the walls into the system. Here “cold”
and “hot” refer to the granular temperature, which is propor-
tional to the average squared velocity fluctuations of the par-
ticles around the mean flow.

In this paper we exploit this connection between convec-
tion and clustering: The original K-compartment system used
to demonstrate clustering is modified in such a way that it
spontaneously generates convective currents. Whereas in the
original system the compartments were connected only via a
slit at a certain height h in the separating wall �6,8�, we now
add a small hole at the bottom �h=0�. In a recent Letter �13�
we introduced the two-compartment version of this modified
system, and discussed the transition from the uniform state
�with both compartments equally filled� to the clustered state
shown in Fig. 1�a�. The latter state exhibits a convective flow
of particles, reminiscent of how water moves through a foun-
tain, and that is why we called it a granular fountain.

Here we will go beyond the two-compartment system and
study an arbitrary number of compartments, both theoreti-
cally and numerically, revealing the increasingly intricate

structure of the transition for growing K, which involves a
whole cascade of convective states.

In Sec. II we describe, after a brief review of the case
K=2, the results of molecular dynamics simulations in cyclic
systems of K=3 and K=5 compartments. These show that
for decreasing shaking strength there is a stepwise transition
from the uniform state with K hot compartments, to a one-
cluster state �one cold compartment and K−1 hot ones; see
Fig. 1�d��, to a two-cluster state �two cold compartments and
K−2 hot ones; see Fig. 1�c��, and so on, until at some low
shaking strength one arrives at a situation with K cold com-
partments, which is again a uniform state. This transition is
found to be strongly hysteretic, with the successive steps in
the opposite direction �i.e., for increasing shaking strength�
taking place at different values of the shaking strength. To
quantitatively explain these observations we use the flux
model introduced in �13�, which we describe in Sec. III. The
technique to find the associated bifurcation diagram �show-
ing the complete cascade� is described in Sec. IV, and we
explicitly work out the cases K=3 and 5, finding good agree-
ment with the numerical diagrams found earlier. In Sec. V
we make concluding remarks. The paper is accompanied
by a mathematical Appendix, where we rule out the exis-
tence of fountain states in which the particle content of the
compartments in the long-time limit would vary periodically
or chaotically.

II. NUMERICAL EXPERIMENTS

Here we describe our observations in molecular dynamics
simulations of the granular fountain in a phenomenological
way. After a brief review of experiments and simulations of
the two-compartment fountain, we proceed to the description
of the results of molecular dynamics simulations in systems
consisting of K=3 and K=5 compartments.

A. Review of K=2 compartments

Before we come to the numerical simulations for K�3
compartments, it is useful to first recapitulate the case of two
compartments �13�.
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When the system is shaken sufficiently strong, or equiva-
lently, when the driving parameter B� �af�−2 is sufficiently
small �with a and f the amplitude and frequency of the driv-
ing; see Eq. �2� for the precise definition of B�, the particles
do not cluster and hence no convection occurs. When the
value of B exceeds a certain critical threshold, however, the
particles spontaneously cluster into one of the compartments
�see Fig. 1�a�� and this creates an imbalance around the hole
at the bottom. The greater pressure from the dense compart-
ment causes a net flow of particles through the hole into the
dilute compartment; and the particles that enter the dilute
compartment soon gain enough kinetic energy from the vi-
brating bottom to jump through the slit again. A steady state
sets in, in which the flow through the hole is balanced by an
equally strong flow �in the opposite direction� through the
slit. In this way the clustering effect in a compartmentalized
granular gas leads to a steady convective flow.

For the two-compartment system we found that the tran-
sition from the uniform state to the fountain state �upon in-
creasing the value of B� occurs through a pitchfork bifurca-
tion, i.e., a continuous second-order phase transition. This is
shown in the bifurcation diagram of Fig. 2. When B is in-
creased even further, the fountain state breaks down and
gives way to the uniform state again, this time via a discon-
tinuous, first-order phase transition �13�. In this high-B re-
gime, the shaking is so weak that the particles do not
get sufficient kinetic energy anymore to jump through the
slit �not even in a diluted compartment� and the only effec-
tive opening is the hole at the bottom, via which a uniform
equilibrium is established.

B. K=3 compartments

The above general scenario �uniform hot state → clus-
tered fountain state → uniform cold state� still holds if we
add more compartments to the system, but now the system
goes through more than just one intermediate fountain state.
For example, for K=3 there are two fountain states: one with
one cluster �Fig. 1�c�� and one with two clusters �Fig. 1�d��.
Another difference from the case of two compartments is
that the one-cluster state is created from the hot uniform state
not via a continuous �second-order� phase transition, but via
a discontinuous �first-order� one, involving hysteresis. This
means that all transitions in the three-compartment system
are hysteretic, and in fact we find that the two fountain states
and the uniform state coexist for a considerable interval of B
values. Therefore, to find which states are stable at a given
value of B we have to explore all possible steady states as
initial conditions.

We performed event-driven molecular dynamics
simulations of a system of K=3 compartments, arranged
cyclically �periodic boundary conditions� and connected by
slits of 5.00�50.0 mm2 �starting at a height h=25.0 mm
above the bottom� and holes of 4.20�4.20 mm2 �starting
immediately at the bottom� located in the center of the
separating walls. Each compartment has a ground area of
�=19.4�50.0 mm2 and contains, in the uniform situation,
200 particles with a radius of r=1.18 mm and a normal
restitution coefficient of e=0.90. Thus the total number

FIG. 1. �Color online� �a� Granular fountain in K=2 compart-
ments: the clustering effect induces a steady convective current in
the system �13�. �b� One of the convection patterns for a cyclic
array of K=5 compartments. �c�, �d� The two convective states in a
cyclic array of K=3 compartments. Both states are threefold degen-
erate, since the cluster �the region of low density� can be located in
any of the three compartments.

FIG. 2. �Color online� Bifurcation diagram for the two-
compartment granular fountain, depicting the steady states of the
system as a function of the driving parameter B defined in Eq. �2�
�from �13��. This diagram contains experimental measurements �in-
dicated by the �black� error bars�, data from molecular dynamics
simulations using uniform �asterisks� and clustered �stars� initial
conditions, and the theoretical prediction from our flux model de-
scribed in Sec. III �gray lines� with �=0.018. The stable states are
indicated by a solid line, the unstable ones by a dashed line. The
model parameter �, representing the ratio of the fluxes through hole
and slit in the limit of very strong shaking, will be defined more
precisely in Sec. III.
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of particles in the three-compartment system is Ntot=600.
The system is driven vertically with a triangular signal of
which the strength ���af�2� is varied by changing the fre-
quency f whereas the amplitude is kept at a constant value of
a=1.00 mm �i.e., a peak to peak amplitude of 2.00 mm�.

Figure 3 shows two typical time-evolution plots for
this system. The left plot, at an inverse driving strength
of �af�−2=1.11�103 �m/s�−2, starts from an unstable uni-
form distribution of 200 particles in each compartment �i.e.,
the particle fraction nk in each compartment with respect
to the uniform distribution is equal to 1� and ends up in a
two-cluster state �depicted in Fig. 1�d�� for which nk�1.45
in two of the compartments, and �0.10 in the third
compartment. For a somewhat weaker driving strength of
�af�−2=1.89�103 �m/s�−2 there still exists a steady two-
cluster state, but it is not reachable anymore from the uni-
form distribution since this has become stable itself. Instead,
it can now be reached from the unstable one-cluster state, as
shown in Fig. 3�b�.

A series of simulation runs like the ones just described, at
different values of the shaking strength and from a variety of
initial states, yields the bifurcation diagram of Fig. 4. It con-
tains all attainable steady states of the three-compartment
system as a function of the inverse driving strength �af�−2

��B�: Starting at strong driving �left in the diagram� we first
see the uniform state, which is stable up to �af�−2=0.56
�103 �m/s�−2. When it becomes unstable, the system goes
over to the stable one-cluster state depicted in Fig. 1�c�.
Lowering the shaking strength even more, a second stable
state comes into existence characterized by two dense com-
partments and one dilute �see Fig. 1�d��. These two convec-
tive states coexist for a certain interval of the shaking
strength until the one-cluster state ceases to be stable; at
approximately the same value of �af�−2 the uniform state
regains its stability. For even lower shaking strength the two-

cluster state becomes unstable too �around �af�−2=2.70
�103 �m/s�−2�, leaving the uniform distribution the only
stable state in the system.

C. K=5 compartments

The bifurcation diagram for a cyclic array of five com-
partments, Fig. 5, follows the same pattern, this time with a
true cascade of fountain states �with a successively growing
number of clusters� acquiring and losing stability. Upon de-
creasing the shaking strength we find, just as for K=3, that
the uniform distribution loses stability in what appears to be
a first-order phase transition �this will be confirmed later in
Fig. 11�: the system jumps immediately to a well-developed
one-cluster state at �af�−2=0.20�103 �m/s�−2. Lowering the
shaking strength we find two-, three-, and four-clustered
fountain states gaining stability one after the other; as an
example we have depicted a three-cluster state in Fig. 1�b�.
Note that at �af�−2�1.35�103 �m/s�−2 the two-, three-, and
four-clustered states are simultaneously stable, illustrating
once more that one really has to explore a variety of initial
states to find all possible end states. Two small clouds of
data points, all originating from an initial one-cluster state,
have been shaded in Fig. 5: Here the system got stuck
in either its initial state �upper cloud� or in a three-cluster
state �lower cloud�. We come back to this in Sec. IV C,
where we will see that at low shaking strengths the transition
from one configuration to the other may easily be hindered
by these side effects.

At some low shaking strength �around �af�−2=1.80
�103 �m/s�−2� the uniform distribution regains stability, and

FIG. 3. �Color online� Two typical time-evolution plots of the
cyclic three-compartment granular fountain, obtained from particle
simulations with 600 particles. The quantity nk along the vertical
axis denotes the particle fraction in compartment k with respect to
the uniform distribution: nk=Nk /200, with Nk the number of par-
ticles in compartment k. �a� starting from the uniform distribution,
with 200 particles in each compartment, at �af�−2=1.11
�103 �m/s�−2; �b� starting from the clustered state in which one
compartment contains all 600 particles, at �af�−2=1.89
�103 �m/s�−2. In both cases the system evolves to a steady two-
cluster state in which two compartments share most of the particles
and one compartment is nearly empty.

FIG. 4. �Color online� Bifurcation diagram of the cyclic granu-
lar fountain with K=3 compartments, from particle simulations
with 600 particles. Asterisks �blue� are steady states obtained from
the uniform initial distribution with 200 particles in each compart-
ment; stars �black� are reached from an initial one-cluster state;
solid dots �red� are obtained from an initial two-cluster state. The
gray curves �drawn as aids to the eye� outline the stable branches of
the bifurcation diagram �cf. Fig. 9�; the dashed line represents the
interval where the uniform state is unstable.
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at an even lower shaking strength �around 2.90
�103 �m/s�−2� it remains the only stable state in the system.
In the rest of this paper we will fully explain the observed
cascade of convection patterns using a dynamical flux model.

III. FLUX MODEL

The quantitative analysis of the observations discussed in
the previous section will be based on the flux model intro-
duced in �13�. Here we will describe the properties of this
flux model in detail, followed by its application to the analy-
sis of the two-compartment granular fountain.

A. The flux function

Clustering in compartmentalized granular gases is known
to be well described by a flux model originally formulated by
Eggers �6,14�. The main constituent of this model is a flux
function, which gives the outflow from the kth compartment
�into each of its neighbors� as a function of its contents,
which we here represent by nk, being the particle fraction in
compartment k with respect to the uniform distribution. �That
is, nk=Nk /Nav, where Nk is the number of particles in com-
partment k and Nav=Ntot /K, with Ntot the total number of
particles in the K-compartment system�. As was shown in
�13� for the two-compartment granular fountain, the flux
function for the system at hand is given by

H�nk� = F�nk� + G�nk� = Ank
2e−Bnk

2
+ �Ank

2. �1�

Here F�nk� represents the outflux from compartment k
through the slit �at height h� and G�nk� the outflux through
the hole at the bottom. In �13� it was shown that such a flux
model very nicely describes the experimental and numerical
results for the two-compartment fountain �cf. Fig. 2�. H�nk�
contains two important parameters, B and �, the significance
of which will be addressed below. The third parameter A is
of less relevance in the present context: It defines the abso-
lute rate of the flux �i.e., the speed of the dynamics� and will
be set to 1 by a redefinition of the time scale.

The functional form of F�nk� can be motivated from the
kinetic theory of granular gases, and contains the important
dimensionless driving parameter �6,7�

B = 4�
gh

�af�2 �1 − e2�2�r2Ntot/��2. �2�

This consists of three dimensionless groups. The first group
is proportional to the ratio between the energy a grain needs
to jump from the bottom to the slit at height h and the energy
it gets from collisions with the vibrating bottom plate. The
second group �1−e2�2 is a measure of the dissipation in the
gas, with e being the normal coefficient of restitution of the
interparticle collisions. The third group is the square of a
filling factor defined as the sum of cross sections of all par-
ticles �r2Ntot divided by the bottom area of a compartment
�. For our purposes, the most important feature of B is its
inverse proportionality to the driving strength �af�2, which
makes it directly comparable to the quantity �af�−2 along the
horizontal axes of Figs. 4 and 5.

The function G�nk� in Eq. �1�, i.e., the outflux through
the hole at the bottom, is obtained by simply taking the limit
h→0 of F�nk�, which is equivalent to setting B=0. One fur-
ther has to account for the fact that the hole and the slit differ
in size, which is done via the parameter �, the ratio of the
fluxes through hole and slit in the limit B→0 of very strong
shaking.

The magnitude of the convective current can be calculated
either as the net flux through the slit or through the bottom
hole �the two are equal in a steady state, apart from their
sign�: G�n1�−G�n2�=��n1

2− �2−n1�2�=��−4+4n1�=2���n1

−n2��. Here we see that �given the form of the flux function
in Eq. �1�� the magnitude of the current is directly propor-
tional to the difference between the fractions in the two com-
partments. Naturally, the current vanishes in the uniform
state n1=n2.

Here we note that the main qualitative features of the
fountain cascade are independent of the exact functional ex-
pressions for F and G, as long as they have the following
general form: �1� F�nk� should go to zero in both limits
nk=0 and nk→�, and attain a maximum in between; �2�
G�nk� should increase monotonically from G�0�; �3� the
sum of F and G �i.e., H� should be a nonmonotonic function
of nk.

The functions F�nk� and G�nk� in Eq. �1� clearly meet the
first two requirements. The third requirement sets a limit to

FIG. 5. �Color online� Bifurcation diagram, obtained from par-
ticle simulations with 1000 particles, showing the stable steady
states of the cyclic five-compartment system. The various symbols
denote the different initial states of the simulation: asterisks �blue�
are obtained from a uniform initial distribution �200 particles in
each compartment�; stars �black� and open triangles �black� from a
one-cluster state; solid dots �red� from a two-cluster state; squares
�green� from a three-cluster state; triangles �magenta� from an ini-
tial four-cluster state. The gray lines help to distinguish the stable
branches of the bifurcation diagram �cf. Fig. 11�. Unlike in Fig. 4,
here the fractions in the dilute compartments belonging to each of
the multicluster states cannot be distinguished from each other. The
shaded areas are explained in the main text.
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the value of �, as follows: The first derivative of the com-
bined flux function H�nk�,

dH

dnk
= 2nk�1 − Bnk

2�e−Bnk
2

+ 2�nk, �3�

is a third-order polynomial, partly modified by the mono-
tonic positive function exp�−Bn2�, so it has potentially three
roots. One of these roots is nk=0 �where H�nk� has a mini-
mum� and the two other roots, if they are real, correspond to
a local maximum and minimum of H�nk�; see Figs. 6�b� and
6�c�. The limit to the value of � corresponds to the case when
this maximum and minimum coincide �forming one inflec-
tion point with zero slope� as in Fig. 6�a�; beyond this value
the function H�nk� becomes monotonically increasing and
does not allow for clustering any longer. The critical case is
determined by dH /dnk=d2H /dnk

2=0, or equivalently

dF

dnk
= −

dG

dnk
and

d2F

dnk
2 = −

d2G

dnk
2 . �4�

Dividing the latter two equations we find that the inflection
point is located at nk=�2/B, and inserted in Eq. �3� �with
dH /dnk=0� this leads to

�c = e−2 � 0.1353. �5�

In Fig. 6�a� we have depicted the function H�nk� for this
critical value of �, which indeed shows an inflection point at
nk=�2/B=1.63. For �	�c the function H�nk� is nonmono-

tonic �Figs. 6�b� and 6�c�� and the outflux from two adjacent
compartments with different values of nk can now balance
each other, i.e., clustering is possible.

B. Analysis of the fountain for K=2

The time evolution of the two-compartment granular
fountain is given by a balance equation, which reflects that
the time rate of change of the particle fraction in either of the
two compartments is given by the inflow from its neighbor
minus the outflux towards the neighbor:

dnk

dt
= H�2 − nk� − H�nk� , �6�

where we have used the fact that the particle fractions should
sum up to 2 �=K�.

Equation �6� can be viewed as the relaxation dynamics of
the variable nk in a one-dimensional potential landscape with
derivative H�nk�−H�2−nk�. Hence, in the long-time limit nk

will necessarily converge toward a steady state. The steady
states of the two-compartment system are found by setting
dnk /dt to zero in Eq. �6� and assessing the linear stability of
such a fixed point �7�: It is stable if d�dnk /dt� /dnk	0 at the
fixed point, i.e., if the first derivative of the above balance
equation �6� is negative. In that case, dnk /dt is positive for nk
just below the fixed point, and negative for nk just above it,
so any fraction in the neighborhood of the fixed point is
automatically driven toward it.

Equation �6� is identically zero for nk=1, so the uniform
distribution is an equilibrium for all values of B and �.
Whether it is stable depends on the sign of the first derivative

� d

dnk
�dnk

dt
	�

nk=1
= − 2� dH

dnk
�

nk=1
= − 4��1 − B�e−B + �� .

�7�

If ���c, this expression is negative for all values of B, i.e.,
the uniform state is stable at any shaking strength. For these
large values of � the hole at the bottom is too large to allow
for any other state; some hint of clustering �as in the setup
with a slit only� may occasionally take place, but the flux
through the hole will soon equalize the contents of the two
compartments again and thus prevent the formation of a clus-
tered convective state. At the critical value �=�c there is
exactly one B value for which the expression �7� is zero,
namely, B=2.

Making the hole smaller, for �	�c we get an interval of
B values around B=2 �bounded by the two solutions of
�= �B−1�e−B� on which Eq. �7� is positive. Here the uniform
distribution is unstable and has given way to a stable clus-
tered, convective state. In Fig. 6�e� �for �=0.08� we see that
in first instance this clustered state exists only for those B
values for which the uniform state is unstable. However, Fig.
6�f� �for �=0.02� shows that a further reduction of the hole
favors the formation of the clustered state to such a degree
that the B interval for which this state exists exceeds the
interval of instability of the uniform solution. In other words,
there is now a B interval on which both the uniform and the
convective states are stable.

FIG. 6. �Color online� Top row: The outflux H�nk� from com-
partment k as a function of its particle contents nk ��blue� solid
curves�, being the sum of the flux through the slit F�nk� ��green�
dotted curves� and the flux through the hole G�nk� ��red� dashed
curves�, for three different values of the parameter � �related to the
size of the hole�. �a� The critical value �c=e−2�0.1353, B=0.75;
�b� �=0.08, B=0.75; �c� �=0.02, B=1.50. Bottom row: The asso-
ciated bifurcation diagrams for the two-compartment system. �d�
For ���c the hole is too large to allow for clustering, so the system
always remains uniform; �e� at �=0.08 there is an interval of B
values for which the uniform state is unstable �dashed� and
the system goes into a stable convective clustered state; �f� for
�=0.02 we see again a new feature, namely, an interval �5.0
B

7.5� where the uniform and convective state are both stable; the
corresponding size of the hole is close to its minimum value of one
particle diameter.
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The value of � at which the convective state extends its
existence beyond the unstable region of the uniform state
�i.e., where the associated pitchfork bifurcation turns from a
sub- into a supercritical one; see Figs. 6�e� and 6�f�� can be
found by performing a Taylor expansion of the stability
criterion �Eq. �7�� around the uniform distribution. Setting
nk=1+� we find

d�d�/dt�
d�

= − H��1 − �� − H��1 + �� = − 4��1 − B�e−B + ��

+ 4Be−B�2B2 − 9B + 6��2 + O��4� , �8�

where H� denotes the derivative of H to nk, or equivalently
to � �cf. Eq. �3��. In the two bifurcation points at nk=1
��=0�, where the convective state merges with the uniform
state, the constant term in the above expansion is equal
to zero. The transition from a sub- to supercritical bifurcation
occurs when also the quadratic term in the Taylor expansion
Eq. �8� vanishes: at that moment the second pitchfork
bifurcation in Fig. 6�e� changes its leftward curve into
a rightward curve, going momentarily �and locally,
where it branches off the horizontal line nk=1� through
a vertical position. So the transition takes place when
Btr= �9+�33� /4�3.6861, leading to �tr= �Btr−1�exp�−Btr�
�0.067 338.

Finally, if the hole becomes smaller than the particle
diameter, no flux through the hole is possible any longer
and we should recover the bifurcation diagram of the system
with a slit only �7,8�. There is no critical value of �
associated with this in our flux model, since the model
bypasses the particle nature of the granular material
�the fractions nk can vary continuously�, yet in the limit
for �→0 one indeed sees that the left-hand pitchfork
bifurcation goes to B=1 and the right-hand pitchfork
bifurcation is shifted toward B→� �meaning that the uni-
form distribution remains unstable even for extremely weak
shaking�. Consequently, also the stability region of the clus-
tered convective state is stretched up to B→�. These are
precisely the characteristics of the bifurcation diagram for
the system with a slit only �6–8�.

The theoretical prediction from the flux model compares
well to the results from experiments and simulations for the
two-compartment system �13�. For our experimental setup
one finds as a rough estimate ��0.02 under the assumption
that the finite particle radius effectively reduces the dimen-
sions of slit and hole by 1.8 mm and neglecting any velocity
anisotropies. When fitted with �=0.018, the comparison of
flux model and experiment in Fig. 2 is good; especially the
bifurcation and the hysteresis are well reproduced.

IV. ANALYSIS FOR K COMPARTMENTS

In this section we present the technique to construct
bifurcation diagrams for arbitrary number of compartments
K. We explicitly work out the cases K=3 and K=5 finding
good agreement with the numerical diagrams found earlier.
We conclude with some general remarks on the structure of
the cascade of convective states for arbitrary K.

A. Matrix formulation of the problem

Given the flux function �Eq. �1�� we can directly write
down the balance equation for a system consisting of arbi-
trarily many compartments:

dnk

dt
= H�nk−1� − 2H�nk� + H�nk+1� , �9�

for k=1, . . . ,K. For simplicity, we will use cyclic boundary
conditions nK+1=n1 �otherwise the end boxes should be
treated separately�. The above balance equation is supple-
mented by the condition 
nk=K, related to the conservation
of the total number of particles Ntot. Equation �9� for all K
compartments together can conveniently be written in matrix
form:

dn

dt
= M · h or

dnk

dt
= 


l=1

K

MklH�nl� , �10�

where n is a K-dimensional vector containing the fractions
nk, h is a vector with components H�nk�, and M is a so-called
tri-diagonal K�K matrix with elements −2 on the diagonal
and 1 on all first off-diagonal positions, as well as on the
corners �1,K� and �K ,1�. This matrix has the following im-
portant properties �8�: its rank is K−1 and its kernel �corre-
sponding to the eigenvalue zero� is the linear subspace
spanned by the eigenvector 1= �1,1 , . . . ,1�. It is also nega-
tive semidefinite, meaning that h ·M ·h	0 unless M ·h=0.
As a consequence all other eigenvalues of M are negative.

FIG. 7. �Color online� Flux function H̃�zk� as a function of the
new variable zk=�Bnk, for a fountain setup with a relatively small
hole ��=0.02�. The steady states of the system must satisfy the
constant-flux condition represented by the dashed horizontal line

�Eq. �13��. For H̃min	 H̃	 H̃max this condition has three solutions
z−, z0, and z+ �which may be combined in any order to construct a

steady state; see Fig. 8�, whereas for H̃ outside this interval there is
only one solution, which means that in these regimes only a uni-
form steady state exists.
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To find the fixed points of Eq. �10� we have to solve
M ·h=0, from which we can immediately conclude that h
should be in the kernel of M, i.e., proportional to 1. This
means that all the elements of the flux vector h should be
equal:

H�nk� = const for all k = 1, . . . ,K . �11�

From Figs. 6�a�–6�c� it is clear that for ���c this constant-
flux condition is only satisfied by the uniform state in
which all compartments are equally filled, but for �	�c
there exist clustered solutions to Eq. �11� with two or
even three different densities �distributed arbitrarily over
the K compartments�, all corresponding to the same value for
the flux.

Since Eq. �10� represents a nonlinear evolution equation
in several dimensions �in fact K−1 dimensions�, in general
not only steady states �fixed points�, but also periodic or even
chaotic solutions may be possible in the long-time limit. The
latter two possibilities are ruled out in the Appendix with the
help of a Lyapunov function. Hence, in order to discuss the
long-time asymptotics of Eq. �10� we can focus on steady
states.

B. Constructing the bifurcation diagram

To construct the bifurcation diagram �i.e., the fixed points
as a function of the driving parameter B� for arbitrary K, we
use the method that we developed in �8�.

First we note that the B dependence of the flux function
H�nk� �Eq. �1�� can be transferred to the conservation condi-
tion 
nk=K by a simple change of variables:

zk � �Bnk, �12�

which �up to an irrelevant multiplicative constant A /B� trans-

forms H�nk� into H̃�zk�=zk
2exp�−zk

2�+�zk
2 �independent of B�

and 
nk=K into 
zk=K�B. The fixed points of Eq. �10� can
now be found by solving

H̃�zk� = const, 

k=1

K

zk = K�B . �13�

In words, we have to find all possible sets of fractions zk
�equal or not, but corresponding to the same flux� that add up
to K�B. The procedure is illustrated in Figs. 7–9.

Below H̃min and above H̃max �see Fig. 7� there is just one

solution to H̃�zk�=const, which together with 
zk=K�B
means that all zk must be equal to �B. This is the uniform

distribution nk=1 �k=1, . . . ,K�. In contrast, between H̃min

and H̃max there are three solutions to H̃�zk�=const, namely,
z−, z0, and z+, and all possible distributions �over the K com-
partments� of these three solutions with 
zk=K�B are steady
states.

To systematically find all those states we construct the

sum functions Si,j,k�H̃�, which represent the distributions
containing i times z−, j times z0, and k times z+,

Si,j,k�H̃� = iz−�H̃� + jz0�H̃� + kz+�H̃� , �14�

for all combinations of i , j ,k ranging from 0 to K with
i+ j+k=K. For example, for K=3 there are ten sum func-
tions, all of which are depicted in Fig. 8�a�. Given these

FIG. 8. �Color online� �a� The ten sum functions Si,j,k for K=3 compartments, i.e., the sum of i times z− �on the lower branch of the
dashed gray S-shaped curve�, j times z0 �on the middle branch�, and k times z+ �on the upper branch�, with i+ j+k=K=3. The uniform state
�with three equal components� is represented by the successive sum functions S3,0,0, S0,3,0, and S0,0,3 �solid black lines�; each transition from
one sum function to the next signals a bifurcation and associated change of stability. The one-cluster state is represented by the sum functions
S2,1,0, S2,0,1, and S0,2,1, respectively. The two-cluster state is represented by S1,2,0, S1,0,2, and S0,1,2. Finally, the central sum function S1,1,1

�solid red line� corresponds to a state with a different fraction in each of the three compartments. �b� Graphical representation of the

conservation condition Si,j,k�H̃�=K�B �Eq. �15��, from which �given any value of B, here B=9� the steady-state fractions zk are determined.
These are the solid dots �blue� on the S-shaped curve �red�, which—translated back to the fractions nk=zk /�B—yield the bifurcation diagram
of Fig. 9.
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functions, the steady states are now determined �for any
value of B� by solving

Si,j,k�H̃� = K�B . �15�

This is graphically illustrated in Fig. 8�b�, where the steady
states for B=9 are given by the intersection points of the sum
functions Si,j,k with the horizontal line K�B=9.

For this value of B, there are three intersection points. The
leftmost of these lies on the sum-function S0,0,3, so this is the
uniform distribution �z+ ,z+ ,z+
; the middle intersection point
lies on S0,1,2, corresponding to a steady two-cluster state that
consists of one compartment with a fraction z0 and two with
a fraction z+ �i.e., any of the three cyclic permutations of
�z0 ,z+ ,z+
�; and the rightmost intersection point �also a two-
cluster state� lies on S1,0,2, corresponding to any of the three
permutations of �z− ,z+ ,z+
�.

This information is then translated back to the original
fractions nk=zk /�B and plotted in the bifurcation diagram of
Fig. 9. Indeed, at the value B=9 we see the three steady
states found above: �1� The uniform state �n1 ,n2 ,n3

= �1,1 ,1
 on the solid �black� line, �2� the threefold-
degenerate state �n1 ,n2 ,n3
��0.50,1.25,1.25
 on the dashed
�blue� curves, and �3� the threefold-degenerate state
�n1 ,n2 ,n3
��0.24,1.38,1.38
 on the solid �blue� curves. As
before, the solid lines stand for stable states, whereas the
dashed lines represent unstable ones.

The stability of the states is determined by means of a
linear stability analysis, i.e., from the eigenvalues of the Ja-

cobi matrix J associated with Eq. �10�. The components of
this matrix are

Jjk =
� ṅj

�nk
= 


l

MjlH��nl�
�nl

�nk
= MjkH��nk� , �16�

where H� denotes the derivative of H with respect to n
�given explicitly in Eq. �3��. The method is analogous to the
stability analysis that has been described in �8�.

C. Bifurcation diagram characteristics

It is interesting to compare the theoretical bifurcation dia-
gram from the flux model �Fig. 9, for �=0.02� with the dia-
gram obtained via numerical experiments �Fig. 4�. We see
that the stable branches agree very well, even in the subtle
discontinuous character of the first transition �at small B�
where the hot uniform state gives way to the one-cluster
fountain state.

There is only one small quantitative difference, namely, in
the filling fractions: in experiment the cluster fractions are
about 10% higher than the theoretical prediction. This may
be traced back to the flux function G�nk� in Eq. �1�, which
for growing cluster fractions nk overestimates the flux
through the hole: When nk becomes very large, the flux
through the hole in reality does not grow without bound but
saturates on a constant level, so big clusters are drained less
than the current flux model predicts. This may be mended by
including a saturation factor G�nk�=�Ank

2�1+�nk
2�−1,

which—at the cost of introducing a fit parameter � into the
model—indeed yields somewhat larger clusters. By tuning
the value of � the cluster sizes can be made to coincide with
the numerically observed ones.

The unstable branches in the bifurcation diagram of
Fig. 9, which are of course not found in the numerical
experiments, show the intricate underlying structure that
connects the stable steady states. One branch deserves
particular attention, since the state corresponding to it
never becomes stable, but only serves to properly stabilize
and destabilize the one- and two-cluster states: this is the
S-shaped branch �dashed red curve� at B�4. It corresponds
to a state in which the three compartments all contain a dif-
ferent particle fraction, positioned on the three different parts
of the S-shaped curve. This state varies continuously from a
two-cluster state at B=2.8 to a one-cluster state at B=4.6.
The same continuous crossover can also be inferred from
Fig. 8�a�, where the associated sum function S1,1,1, �solid red
curve� is seen to connect the two-cluster function S1,2,0 �at
the point where it goes over into S1,0,2� with the one-cluster
function S2,0,1 �at the point where it goes over into S0,2,1�.

It is worthwhile to have a closer look at the bifurcational
structure of the three-compartment system, and this is
done in Fig. 10 at six successive points for increasing values
of B. The six triangular plots represent the configuration
space spanned by the fractions n1, n2, and n3. The lower
left corner of each plot corresponds to the state �n1 ,n2 ,n3

= �3,0 ,0
 �all material in compartment 1�, the lower right
corner to �0,3 ,0
, and the upper corner to �0,0 ,3
 �15�.
The center of the triangle corresponds to the uniform

FIG. 9. �Color online� Bifurcation diagram of the three-
compartment system, evaluated from the flux model. It shows both
the stable steady states �solid lines�, which agree well with the ones
found from numerical experiments in Fig. 4, and the unstable states
�dashed lines�. The S-shaped curve at B�4 �red� corresponds to a
steady state that is always unstable, consisting of three different
fractions nk in the three compartments. The dashed line at B=9 is
the counterpart of the horizontal dashed line in Fig. 8�b�; the three
coexisting steady states at this value of B �uniform state, unstable
two-cluster state, and stable two-cluster state� are discussed in the
text.
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state �1,1 ,1
, which is present �in the form of a dot� in
each of the six plots. Solid dots denote stable steady states,
and open dots denote unstable ones. The different shadings
represent the basins of attraction of the various steady
states: white corresponds to the uniform state, light gray
�yellow� to a one-cluster state, and dark gray �blue� to a
two-cluster state.

In Fig. 10�a�, for B=0.56 �strong shaking�, only the uni-
form fixed point in the center exists. Being the only steady
state, it is naturally stable. Any initial configuration �every
point within the triangle� evolves toward it.

In Fig. 10�b�, at B=0.94, the stable one-cluster state has
just come into existence. It is threefold degenerate �since the
cluster can be located in any of the three compartments� and
is represented by the three solid dots toward the corners of
the triangles. It has been created together �via a saddle-node
bifurcation, at a B value slightly smaller than the present
one� with an unstable one-cluster state. This twin state �rep-
resented by the open dots, also threefold degenerate� lies
exactly on the boundary between the basins of attraction of
the one-cluster state �light gray �yellow�� and the uniform
state �white�. It closes in upon the uniform state as B grows,
diminishing its basin of attraction, and goes right through it
at a value just beyond B=1. At that moment the white basin
of attraction vanishes and the uniform fixed point becomes
unstable.

Figure 10�c�, at B=2.22, shows that the unstable one-
cluster state has passed through the central fixed point and is
now positioned at the other side of the uniform state.
This means that the compartment that previously had a frac-
tion nk exceeding 1 now contains less than 1; vice versa,
the two compartments that had fractions less than 1 now
contain more than 1. So after its passage through the uniform
state the unstable one-cluster state has become an unstable
two-cluster state. This is also apparent from the bifurcation
diagram: The dashed �blue� lines that cross the uniform
state �just beyond B=1� represent a one-cluster state to the

left of this intersection point, but a two-cluster state to the
right of it.

The whole triangle is now light gray �yellow�, i.e., every
initial condition leads to one of the three one-cluster states.
The dashed lines that have been drawn in the configuration
space depict the stable and unstable manifolds �eigenvectors�
of the various fixed points. The eigenvectors of the fixed
point in the center are directed toward the unstable two-
cluster states. These two-cluster states have two stable direc-
tions and two unstable ones �i.e., they are saddle points�,
with the unstable ones being directed toward the stable one-
cluster states. Thus, if one starts out from an initial state
close to the uniform distribution, the dynamics is such that
the system first passes close by the unstable two-cluster state
before it eventually arrives at the one-cluster state. The two-
cluster state is a so-called transient.

The next stage is depicted in Fig. 10�d�, at B=3.89. The
one-cluster state is still stable, and also the unstable two-
cluster has gained stability through a pitchfork bifurcation in
which two unstable fixed points are created per two-cluster.
These are the six open dots that lie on the boundaries be-
tween the basins of attraction of the two-cluster states �dark
gray �blue�� and those of the one-cluster states �light gray
�yellow��. They represent the crossover state we encountered
before �associated with the sum function S1,1,1�, with a dif-
ferent fraction in each of the three compartments, which is
obviously sixfold degenerate.

For increasing B the six unstable points move from
the two- toward the one-cluster states and in Fig. 10�e�, at
B=4.89, they have just arrived there. Upon their arrival they
have �in a reverse pitchfork bifurcation� made the one-cluster
state unstable. So now the only stable fixed points in the
diagram are the two-cluster states, and indeed the whole tri-
angle is dark gray �blue�, i.e., every initial state leads to a
two-cluster state. The straight lines from the corners of the
triangle toward the center �which encompass both the un-
stable uniform state and the three unstable one-clusters� are

FIG. 10. �Color online� Bifurcation structure of the three-compartment granular fountain, highlighted at six successive values of the
parameter B. The triangular plots �a�–�f� depict the configuration space, as explained in the text; white regions indicate the basin of attraction
of the uniform steady state �the fixed point in the center�, light gray �yellow� regions correspond to the three
one-cluster states �the fixed points toward the corners of the triangle�, and dark gray �blue� regions correspond to the three two-cluster states
�the fixed points close to the middle of the sides of the triangle�. Beyond B�11 the situation of plot �a� is recovered again.
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the boundaries between the regions of attraction of the three
permutations of the two-cluster state.

In Fig. 10�f�, at B=7.78, the three unstable one-cluster
points have traveled along these lines toward—and
through—the uniform fixed point in the center. In the pro-
cess, the uniform state has become stable again and the one-
cluster states have turned into two-cluster states �as before;
see the discussion of Fig. 10�c��. This is also seen in the
bifurcation diagram.

The basins of attraction at this value of B show an inter-
esting feature: If one starts out with all beads in one single
compartment �say �3,0 ,0
 in the lower left corner of the
plot�, the system will eventually end up in the uniform state,
since the corners of the triangle lie in the white basin of
attraction. This may, however, take quite some time since the
system has to pass through a narrow channel in the configu-
ration space. In an experimental situation, i.e., in the pres-
ence of statistical fluctuations, the system may even be
kicked out of the channel and into the dark gray �blue� basin
of attraction—ending up in a two-cluster state. In our nu-
merical experiments on the three-compartment system we
have always been able to avoid this effect, but for five com-
partments �when the channels are even narrower, and the
configuration space more intricate as a whole� we have en-
countered it in the form of the shaded data sets in Fig. 5. All
these data originated from a state with all beads in one com-
partment, which either got stuck there or �by a statistical
fluctuation� were kicked into the basin of attraction of a
three-cluster state.

After stage Fig. 10�f�, around B=11, the unstable two-
cluster states and their stable counterparts meet and annihi-
late each other �in a reverse saddle-node bifurcation�, leaving
only the stable fixed point in the middle of the triangle. The
resulting configuration space is just the same as the one de-

picted in Fig. 10�a�: every initial condition leads to the uni-
form state again.

D. Beyond K=3 compartments

The analysis for K=3 compartments can be extended
analogously to any number of compartments. As an example
in Fig. 11 we give the bifurcation diagram for K=5 compart-
ments, also for �=0.02, which may be compared to the nu-
merically obtained diagram in Fig. 5. Again the stable
branches agree reasonably well, and the flux model reveals
how they are connected to each other by a complex maze of
unstable branches. The three-fraction states �that never be-
come stable� have become more frequent than in the case
K=3, and they are seen to play an important role in stabiliz-
ing and destabilizing the regular fountain states, which have
only two different fractions. The diluted branches are better
distinguishable than in the molecular dynamics situations,
which can be attributed to the presence of noise in the latter.
Moreover, in the simulations the clustering is somewhatmore
pronounced, and hence the depleted compartments are more
dilute. The largest difference is found for the one-cluster
state where for increasing B the model predicts a decrease of

FIG. 11. �Color online� Bifurcation diagram of the five-
compartment system, evaluated from the flux model with �=0.02.
The stable steady states �solid lines� agree well with the ones found
from numerical experiments �Fig. 5� and are seen to be intercon-
nected via a whole maze of unstable steady states �dashed lines,
increasingly fragmented with increasing number of unstable eigen-
values�. Among the unstable states are also six states with three
different particle fractions �the S-shaped �red� lines�; these never
become stable, but play an important role in stabilizing and desta-
bilizing the regular fountain states with only two different fractions. FIG. 12. �Color online� Construction of a stable two-fraction

fountain state, with the hot �dilute� compartments containing a frac-
tion z− /�B and the cold �dense� compartments z+ /�B. �a� The flux
function H�z� �blue curve� and its derivative H��z� �red curve� for
�=0.02. The solid dots are pairs of points that satisfy the flux bal-
ance H�z+�=H�z−� and the derivative equality H��z+�=H��z−�, re-
spectively. The arrows indicate the direction in which these pairs
evolve as the shaking parameter B is increased. �b� The curves of z+

vs z− corresponding to the condition H�z+�=H�z−� �blue� and to
H��z+�=H��z−� �red�. These curves cross each other in one point:
the corresponding two-fraction state is stable, as explained in the
text.
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the cluster size, whereas the simulations show a slight in-
crease �cf. Fig. 5�. Including a saturation factor as explained
in the previous subsection can only partly repair this differ-
ence. However, the dynamics in the highly clustered region
is very slow, so it may well be that in the simulation the
system was still on its way to the true stable one-cluster state
�or even got stuck� and that therefore the cluster size in Fig.
5 was overestimated.

The number of branches in the bifurcation diagram is di-
rectly related to the number of sum functions Si,j,k, which for
general K is equal to 1

2 �K+1��K+2�, as can be shown by
enumerating all possible combinations of i, j, and k under the
condition i+ j+k=K. Three of these functions correspond to
the uniform state �namely, SK,0,0, S0,K,0, and S0,0,K, with only
one of the three elements i , j ,k being nonzero�; then there are
3K−3 sum functions corresponding to two-fraction states
�with two elements from i , j ,k being nonzero�; and the rest
of the sum functions �1

2 �K+1��K+2�−3K= 1
2 �K−1��K−2� of

them� correspond to three-fraction states for which all three
elements i , j ,k are nonzero. These are in general unstable.

For any K�2 it can be proven that each of the successive
two-fraction fountain states has an associated interval of B
values on which it is stable. This is illustrated in Fig. 12,
where we explicitly construct such a stable two-fraction
state.

In Fig. 12�a� we have depicted the flux function H�z�
�for �=0.02, but any � smaller than �c would do�, and
we concentrate on the situation which consists of z− and
z+, i.e., the two fractions corresponding to the left and
right branches of H�z� �cf. Fig. 7�. This situation comes

into existence �at a certain value of B� with the two fractions
�z− ,z+
= �zmin,z�Hmin�
. For increasing B the fractions gradu-
ally evolve toward �z− ,z+
= �z�Hmax� ,zmax
, always such that
H�z−�=H�z+�, ensuring the flux balance throughout the
K-compartment array. This evolution for growing B is indi-
cated by the top �blue� arrows in the upper part of Fig. 12�a�.

In the same figure we have plotted the derivative of the
flux function H��z�, and we follow the two fractions z−

* and
z+

* that satisfy the condition H��z−�=H��z+�. As B increases,
these two fractions evolve from �z−

* ,z+
*
��zmin,15.3
 toward

�z−
* ,z+

*
= �z�Hmax� ,z�Hmin�
. The evolution of the pair �z−
* ,z+

*

for growing B is indicated by the �top� red arrows in the
lower part of Fig. 12�a�.

In Fig. 12�b� we plot two curves: �a� The first one shows
z+ vs z− corresponding to the flux balance H�z+�=H�z−� �blue
curve�. In agreement with the blue arrows in Fig. 12�a�
�which both point in the positive direction� this is a mono-
tonically increasing function of z−, from z�Hmin� to some
higher value. �b� Second, we plot z+

* vs z−
* corresponding to

the second condition H��z+�=H��z−� �red curve�. This is a
decreasing function of z− �in agreement with the direction of
the red arrows in Fig. 12�a��, starting from some high value
and ending at z�Hmin�. Since the first curve starts from
z�Hmin� and the second one ends at this same value, the two
functions necessarily cross each other. This yields a unique
solution for which both H�z+�=H�z−� and H��z+�=H��z−� are
satisfied.

For this two-fraction state the Jacobi matrix �Eq. �16��
takes the form

J = M�
H��z−� ¯ 0 0 ¯ 0

� � � � �
0 ¯ H��z−� 0 ¯ 0

0 ¯ 0 H��z+� ¯ 0

� � � � �
0 ¯ 0 0 ¯ H��z+�

� = H��z+�M , �17�

or equivalently J=H��z−�M at this particular point. Since
H��z+� is positive �see Fig. 12�a�� and the matrix M is nega-
tive definite �where we disqualify the zero-eigenvalue vector
�1 , . . . ,1
, which corresponds to adding an equal amount of
material to every compartment, violating the mass conserva-
tion in the system �8��, Eq. �17� implies that all eigenvalues
of J are negative. Hence the constructed two-fraction state
�with fractions z− and z+ given by the crossing point in Fig.
12�b�� is stable. And typically, if it is stable at one particular
value of B, it will also be stable in some interval of B values
around it.

Along the same lines we can explain the observed cascade
of two-fraction fountain states in the bifurcation diagram,
with the states that have more “cold” �dense� compartments
occurring toward larger values of B. Indeed, when the con-

structed state contains many z+ �cold compartments�, then
the associated B value is high, because �B= �iz−+kz+� /K,
with i+k=K �cf. Eq. �14���. Hence the unique solution we
have constructed in Fig. 12 lies toward larger B with increas-
ing number of cold z+ compartments: with every extra z+, the
square root of the associated B value increases with
�z+−z−� /K. This shows that the cascade observed for K=3
and 5 exists for any number of compartments K�3.

The above analysis can be carried out analogously for the
three-fraction states. These are found to be typically un-
stable, because one of the three fractions corresponds to the
middle branch of H�z�, namely, z0, for which the derivative
H��z0� is negative. This generally leads to one or more posi-
tive eigenvalues of J.
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V. CONCLUSION

In conclusion, on the basis of our flux model we have
constructed the bifurcation diagram of the granular fountain
with K compartments, for any K�2. For decreasing shaking
strength �or equivalently, for increasing B, Eq. �2�� we find a
stepwise transition from the uniform state with K hot com-
partments, to a one-cluster state �one cold compartment and
K−1 hot ones�, to a two-cluster state �two cold compart-
ments and K−2 hot ones�, and so on, until at some low
shaking strength one arrives at the situation with K cold
compartments, which is again a uniform state. For K�3 the
successive steps in this cascade are all hysteretic, first-order
transitions.

The theoretical bifurcation diagram obtained from the flux
model proves to be in good quantitative agreement with
our molecular dynamics simulations on fountain setups with
K=3 and 5 compartments.
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APPENDIX: LYAPUNOV FUNCTION

In general, not only steady states �fixed points�, but also
periodic or even chaotic states may be possible solutions of

Eq. �10� in the long-time limit. In this appendix, we rule out
the existence of periodic solutions to Eq. �10� by explicitly
constructing a strict Lyapunov function for the
K-compartment system �16�.

To this end, we first define the functions


�n� ª − �
�=0

n

H���d� , �A1�

L�n� ª 

k=1

K


�nk� . �A2�

With Eq. �1� it follows that L�n��0 for any vector n with
nk� �0,1�.

Next we compute the time derivative of L along a solution
n�t� of the dynamics Eq. �10�:

d

dt
L�n�t�� = 


k=1

K �d


dn
	

n=nk�t�

dnk�t�
dt

= − 

k=1

K



l=1

K

H„nk�t�…MklH„nl�t�… = − h · M · h .

�A3�

Due to the properties of M mentioned in Sec. IV A it follows
that dL(n�t�) /dt�0, except if M ·h=0 or, equivalently, if
dn�t� /dt=0. In other words, L�n� is a so-called Lyapunov
function, implying that dn�t� /dt→0 for t→�, i.e., the only
possibility for n�t� for asymptotically long time t is to con-
verge toward a fixed point.
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